(왼쪽부터) 전기및전자공학부 최양규 교수, 명현 교수, 신소재공학과 이건재 교수 / 사진. 카이스트
카이스트(KAIST)는 지난 9월 21일(목) 동대학 전기및전자공학부 최양규 교수, 명현 교수, 그리고 신소재공학과 이건재 교수 공동연구팀이 ‘인간의 뇌를 모방한 3차원 집적 뉴로모픽 반도체’를 개발하는 데에 성공했다고 밝혔다.
지난 2021년 ‘인간의 뇌를 모방해 동일평면 상에 수평 집적한 뉴로모픽 반도체’를 개발하는 데에 성공했던 연구팀은, 뉴런 소자와 시냅스 소자를 상하부에 3차원 방식으로 수직 집적해, 보다 높은 집적도와 전력 효율을 가지는 뉴로모픽 반도체를 구현할 수 있음을 처음으로 보였다.
뉴로모픽(neuromorphic) 하드웨어는, 인간의 뇌가 매우 복잡한 기능을 수행하지만 소비하는 에너지는 20와트(W) 밖에 되지 않는다는 것에 착안해, 인간의 뇌를 모방해 인공지능 기능을 하드웨어로 구현하는 방식이다. 뉴로모픽 하드웨어는 기존의 폰 노이만(von Neumann) 방식과 다르게 인공지능 기능을 초저전력으로 수행할 수 있어 많은 주목을 받고 있다. 뉴로모픽 하드웨어를 구현하기 위해서는 생물학적 뇌와 동일하게 일정 신호가 통합되었을 때 스파이크를 발생하는 뉴런과 두 뉴런 사이의 연결성을 기억하는 시냅스가 필요하다.
3차원 집적 뉴로모픽 반도체를 이용한 수화 패턴 인식 / 사진. 카이스트
연구팀은 단일 박막 트랜지스터(thin-film transistor) 기반 시냅스 소자를 단일 트랜지스터 기반 뉴런 소자 위에 3차원 방식으로 수직 집적해, 높은 집적도와 전력 효율을 가지는 3차원 집적 뉴로모픽 반도체를 개발했다. 아래층 뉴런 소자의 손상 없이 위층 시냅스 소자를 제작하기 위해, 엑시머 레이저 어닐링(excimer laser annealing) 기법을 활용했다. 또한, 아래층 뉴런 소자의 손상 없이 위층 시냅스 소자의 내구성을 향상시키기 위해, 소자 내부의 줄열(Joule heat)을 이용한 자체 어닐링 기법도 제안했다. 이러한 뛰어난 내구성을 바탕으로, 이벤트 카메라(event camera)를 기반으로 제작된 손동작 기반의 수화 패턴을 높은 성공률로 인식할 수 있음을 보였다.